Cytochrome P450 2C19 (CYP2C19) Activity Assay Kit (Fluorometric)
(Catalog # K848-100; 100 Reactions; Store at -20°C)

I. Introduction:
Cytochrome P450 2C19 (CYP2C19, EC 1.14.14.1) is a member of the cytochrome P450 monooxidase (CYP) family of microsomal xenobiotic metabolism enzymes. CYPs are membrane-bound hemeproteins responsible for Phase I biotransformation reactions, in which lipophilic drugs and other xenobiotic compounds are converted to more hydrophilic products to facilitate excretion from the body. CYP2C19 is primarily expressed in liver and intestinal tissue and catalyzes oxidation of neutral or weakly basic lipophilic molecules with 2-3 hydrogen bond donor/acceptor sites. Isoforms of the CYP2C subfamily are responsible for metabolism of nearly 20% of all small molecule drugs commonly used by humans. Polymorphisms in the human CYP2C19 gene have been implicated in clinical drug/drug interactions involving widely-prescribed drugs, including proton pump inhibitors, antiplatelet agents and anticonvulsants. In addition, for drugs whose pharmacological activity requires metabolism from a pro-drug form, CYP2C19 inhibition or allelic deficiency can lead to decreased drug efficacy. BioVision’s CYP2C19 Activity Assay Kit enables rapid measurement of native or recombinant CYP2C19 activity in biological samples such as liver microsomes. The assay utilizes a non-fluorescent CYP2C19 substrate that is converted into a highly fluorescent metabolite detected in the visible range (Ex/Em = 406/468 nm), ensuring a high signal-to-background ratio with little interference by autofluorescence. A highly-selective CYP2C19 inhibitor is provided for determination of CYP2C19 activity in heterogeneous biological samples, where other CYP isozymes may contribute to substrate metabolism. The inhibitor displays greater than 100-fold selectivity for CYP2C19 over other CYPs, ensuring targeted inhibition. CYP2C19 specific activity is calculated by running parallel reactions in the presence and absence of the selective inhibitor and subtracting any residual activity detected with the inhibitor present. The kit contains a complete set of reagents sufficient for performing 50 sets of paired reactions (in the presence and absence of inhibitor).

II. Applications:
- Rapid assessment of native/recombinant CYP2C19 activity in fractions prepared from tissues and cells.
- Screening of drugs and novel ligands for interaction with native/recombinant CYP2C19.

III. Sample Type:
- Human liver microsomes and liver S9 fractions
- Lysates of tissues and cultured cells, primary hepatocytes
- Heterologously expressed recombinant CYP2C19 preparations

IV. Kit Contents:

<table>
<thead>
<tr>
<th>Components</th>
<th>K848-100</th>
<th>Cap Code</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2C19 Assay Buffer</td>
<td>100 ml</td>
<td>NM</td>
<td>K848-100-1</td>
</tr>
<tr>
<td>3-CHC Standard</td>
<td>1 vial</td>
<td>Yellow</td>
<td>K848-100-2</td>
</tr>
<tr>
<td>CYP2C19 Inhibitor (+)-N-3-benzylirvanol</td>
<td>1 vial</td>
<td>Amber</td>
<td>K848-100-3</td>
</tr>
<tr>
<td>NADPH Generating System (100X)</td>
<td>1 vial</td>
<td>Green</td>
<td>K848-100-4</td>
</tr>
<tr>
<td>β-NADP⁺ Stock (100X)</td>
<td>1 vial</td>
<td>Blue</td>
<td>K848-100-5</td>
</tr>
<tr>
<td>CYP2C19 Substrate</td>
<td>1 vial</td>
<td>Red</td>
<td>K848-100-6</td>
</tr>
<tr>
<td>Recombinant Human CYP2C19</td>
<td>1 vial</td>
<td>Violet</td>
<td>K848-100-7</td>
</tr>
</tbody>
</table>

V. User Supplied Reagents and Equipment:
- Multwell fluorescence microplate reader
- Precision multi-channel pipette and reagent reservoir
- Anhydrous (reagent grade) acetonitrile and DMSO
- Black 96-well plates with flat bottom

VI. Storage Conditions and Reagent Preparation:
Store kit at -20°C and protect from light. Briefly centrifuge all small vials prior to opening. Allow the CYP2C19 Assay Buffer to warm to room temperature prior to use. Read entire protocol before performing the assay procedures.
- 3-CHC Standard: Reconstitute in 110 µl of DMSO and vortex until fully dissolved to yield a 5 mM stock solution. The 3-CHC stock solution should be stored at -20°C and is stable for at least 3 freeze/thaw cycles.
- CYP2C19 Inhibitor (+)-N-3-benzylirvanol: Reconstitute in 55 µl of acetonitrile and vortex until fully dissolved to yield a 6 mM stock solution. The stock solution is stable for 2 months at -20°C. To obtain a 150 µM working solution of (+)-N-3-benzylirvanol (5X final concentration), add 25 µl of the 6 mM stock solution to 975 µl of CYP2C19 Assay Buffer. The 150 µM working solution should be stored at -20°C and used within one month (stable for at least 3 freeze/thaw cycles).

155 S. Milpitas Blvd., Milpitas, CA 95035 USA | T: (408)493-1800 F: (408)493-1801 | www.biovision.com | tech@biovision.com
• **NADPH Generating System (100X):** Reconstitute with 220 µl CYP2C19 Assay Buffer, aliquot and store at -20°C. Avoid repeated freeze/thaw cycles and keep on ice while in use.

• **β-NADP⁺ Stock (100X):** Dissolve in 110 µl CYP2C19 Assay Buffer and vortex thoroughly to yield a 10 mM solution of NADP⁺ (100X stock). Store at -20°C, stable for at least 3 freeze/thaw cycles.

• **CYP2C19 Substrate:** Reconstitute with 110 µl anhydrous reagent-grade acetonitrile and vortex until fully dissolved to obtain a 5 mM stock solution. Store at -20°C. Allow the vial to warm to room temperature before opening and promptly retighten cap after use to avoid absorption of airborne moisture.

• **Recombinant Human CYP2C19:** Do not reconstitute until ready to use. Reconstitute with 230 µl CYP2C19 Assay Buffer and add 20 µl of NADPH Generating System (100X). Mix thoroughly to ensure a homogenous solution (the solution will have a slightly opaque, milky appearance), aliquot and store at -80°C. Avoid repeated freeze/thaw cycles and use aliquots within one month (the Recombinant Human CYP2C19 will lose approximately 10% activity per week when stored at -80°C). Thaw aliquots rapidly at 37°C and place on ice until use (thawed aliquots should be used within 4 hours).

VII. Cytochrome P450 2C19 (CYP2C19) Activity Assay Kit Protocol:

1. Standard Curve Preparation:

a. Dilute the 3-CHC Standard (5 mM stock) by adding 20 µl of the 5 mM solution to 480 µl CYP2C19 Assay Buffer to yield a 200 µM solution. Mix 5 µl of the 200 µM solution with 995 µl CYP2C19 Assay Buffer to generate the final 1 pmole/µl (1 µM) 3-CHC fluorescence standard. Add 0, 2, 4, 6, 8, 12, 16 and 20 µl of the 1 pmole/µl 3-CHC standard into a series of wells in an opaque 96-well plate. Adjust the volume of each well to 100 µl with CYP2C19 Assay Buffer, yielding 0, 2, 4, 6, 8, 12, 16 and 20 pmole/well of 3-CHC Standard.

b. Measure fluorescence at Ex/Em = 406/468 nm. Subtract the zero standard reading from all of the standard readings, plot the background-subtracted values and calculate the slope of the standard curve.

2. Sample and Test Compound Preparation:

a. Standardized microsomal preparations may be purchased commercially (e.g. donor-pooled human liver microsomes) or prepared from liver tissue or cultured cells using the Microsome Isolation Kit (Cat. #K249). Alternatively, a crude enriched lysate can be prepared: start with ~50 mg tissue or ~5 x 10⁸ cells pelleted, pre-washed cells and homogenize in 500 µl ice-cold CYP2C19 Assay Buffer with a Dounce homogenizer (Cat. #1998 or equivalent) on ice. Incubate the homogenate on ice for 5 min. and then centrifuge at 15,000 x g for 15 min. in a refrigerated centrifuge at 4°C. Collect the resultant clarified supernatant for the assay in a new pre-chilled microtube and store on ice until use (cell and tissue lysates can also be stored at -80°C in aliquots for future experiments).

b. If desired, CYP2C19 activity in presence of test ligands may be measured. Test ligands should be dissolved into proper solvent to produce stock solutions (see note regarding solvent effects below). For each ligand, prepare a 5X solution by diluting in CYP2C19 Assay Buffer.

Notes:

- To quantify CYP2C19 specific activity in terms of sample protein content, use the Bradford reagent (Cat. #K810) or an equivalent protein assay.

- When measuring CYP2C19 activity in presence of ligands (inhibitors or substrates), run parallel solvent control well(s) to account for additional solvent in the reaction mix. Many commonly-used organic solvents can severely impact CYP2C19 activity. Importantly, DMSO causes significant inhibition of CYP2C19 at final concentrations >0.25% (v/v). Our assay is designed to use acetonitrile at a final concentration of ≤1%, which has been shown to have little impact on CYP2C19 activity.

3. Reaction Preparation:

a. Prepare enough reagents for the number of reactions to be performed. For each reaction, prepare a 2X concentrated P450 reaction mix by combining 2-48 µl of sample and 2 µl of the NADPH Generating System (100X) in a 96-well plate and adjusting the final volume to 50 µl/reaction with CYP2C19 Assay Buffer. The amount of sample per reaction and the dilution factor required will vary based upon the nature of the sample. In human liver tissue, CYP2C19 typically accounts for only a small fraction of the total P450 content (approximately 2-4%). Hence, for human liver microsomes, we recommend starting with 25 µg of microsomal protein per well. For liver S9 fractions or other cellular lysates, the amount of protein required will be significantly higher. In this case, we recommend starting at 50-100 µg/well.

Note: Due to the large individual variation in CYP2C19 expression level and function, sample protein levels may need to be adjusted.

b. In addition to the test samples, prepare background control (no enzyme) and inhibitor control (30 µM (+)-3-N-benzyl nirvanol) wells. If desired, you may also prepare CYP2C19 enzyme positive control (PC) and PC + inhibitor wells using the Recombinant Human CYP2C19 and (+)-3-N-benzyl nirvanol 5X solution. Adjust the volume of test sample, inhibitor control and PC wells to 70 µl/well with CYP2C19 Assay Buffer. For measurement of CYP2C19 activity in the presence of test ligands, replace CYP2C19 Assay Buffer with 5X concentrated test ligand solution:

<table>
<thead>
<tr>
<th>P450 Reaction Mix (2X)</th>
<th>Test Sample</th>
<th>+ Inhibitor Control</th>
<th>Background</th>
<th>PC</th>
<th>PC + Inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recombinant Human CYP2C19</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>25 µl</td>
<td>25 µl</td>
</tr>
<tr>
<td>(+)-N3-benzyl nirvanol 150 µM Solution (5X)</td>
<td>—</td>
<td>20 µl</td>
<td>—</td>
<td>20 µl</td>
<td></td>
</tr>
<tr>
<td>CYP2C19 Assay Buffer</td>
<td>20 µl</td>
<td>—</td>
<td>50 µl</td>
<td>45 µl</td>
<td>25 µl</td>
</tr>
<tr>
<td>Test Ligand (5X)</td>
<td>—</td>
<td>20 µl</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

c. Incubate the plate for 10-15 min at 37°C to allow the inhibitor (+)-N3-benzyl nirvanol or any test ligands to interact with CYP2C19 in the absence of P450 catalytic turnover. During the incubation, prepare a CYP2C19 Substrate/NADP⁺ mixture (3X) by adding 6 µl of the reconstituted 5 mM CYP2C19 Substrate stock solution and 50 µl of the reconstituted 10 mM β-NADP⁺ Stock (100X) to 1444 µl of CYP2C19 Assay Buffer for a total volume of 1.5 ml. This preparation is sufficient for 50 reactions, but can be scaled depending upon the number of reactions to be performed.
d. Start the reaction by adding 30 µl of the CYP2C19 Substrate/NADP⁺ (3X) mixture to each well using a multichannel pipette, yielding a final reaction volume of 100 µl/well.

Note: The Recombinant Human CYP2C19 preparation may settle and should be thoroughly mixed before dispensing.

4. **Measurement:** Immediately (within 1 min) measure the fluorescence at Ex/Em = 406/468 nm in kinetic mode for 60 min at 37°C. While this assay can be performed in either endpoint or kinetic mode, we strongly recommend reading in kinetic mode in order to ensure that the measurements recorded are within the linear range of the reaction. Ideal measurement time for the linear range may vary depending upon the content of active CYP2C19 in the sample.

Note: Since the reaction starts immediately after the addition of the CYP2C19 Substrate/NADP⁺ mix, it is essential to preconfigure the fluorescence microplate reader settings and use a multichannel pipette with a reagent reservoir to minimize lag time among wells.

5. **Calculation:** For each reaction well (including background and positive inhibition controls), choose two time points (T₁ and T₂) in the linear phase of the reaction progress curves, obtain the corresponding fluorescence values at those points (RFU₁ and RFU₂) and determine the change in fluorescence over the time interval: \(\Delta F = RFU₂ - RFU₁ \). Subtract the \(\Delta F \) value of the background control (BC) from those of the test samples (S) and 30 µM (+)-N-3-benzylnirvanol positive inhibition control (l) to determine the background-corrected change in fluorescence intensity for each well. Calculate the specific fluorescence generated by CYP2C19 activity (denoted by C) by subtracting the positive inhibition control from each sample:

\[
C₅ = (\Delta F₅ - \Delta F_{BC}) - (\Delta F₁ - \Delta F_{BC}) = \Delta F₅ - \Delta F₁
\]

Notes:
- The CYP2C19 Substrate is also metabolized by CYP1A2, necessitating the use of selective inhibitors to determine the contribution of each isozyme in heterogeneous biological samples. The (+)-N-3-benzylnirvanol concentration (30 µM) used in our assay is 25-fold greater than the IC₅₀ for recombinant CYP2C19 and has been shown not to affect the activity of other CYPs (Walsky & Obach 2003, DMD, 31: 343). In human liver microsomes, this concentration results in 30-40% inhibition of 3-CHC formation, which represents the CYP2C19-mediated metabolic activity. In samples with significant CYP1A2 expression, the contribution of 1A2 to substrate metabolism may be tested using the selective CYP1A2 inhibitor α-naphthoflavone (Cat #2918) at a final concentration of 0.5 µM.
- In our experience, the CYP2C19 Substrate does not undergo appreciable non-enzymatic conversion to the fluorescent product. Thus, the background control (BC) well rate calculation may yield a negative value, in which case, the BC value may be ignored.

CYP2C19 metabolic activity is obtained by applying the \(C₅ \) values to the 3-CHC standard curve to get B pmole of substrate metabolized to 3-CHC by CYP2C19 during the reaction time.

\[
\text{Cytochrome P450 2C19 Specific Activity} = \frac{B}{\Delta T \times P} = \text{pmole/min/mg} = \mu \text{U/mg}
\]

Where:
- \(B \) is the amount of 3-CHC produced, calculated from the standard curve (in pmole)
- \(\Delta T \) is the linear phase reaction time \(T₂ - T₁ \) (in minutes)
- \(P \) is the amount of protein in the well (in mg)

CYP2C19 Unit Definition: One unit of CYP2C19 activity is the amount of enzyme that generates 1 µmole of 3-CHC per min by hydrolysis of 1 µmole fluorogenic substrate at 37°C and pH 7.7.

VIII. RELATED PRODUCTS:

- Microsome Isolation Kit (K249)
- Cytochrome P450 2C19 Inhibitor Screening Kit (K849)
- Cytochrome P450 3A4 Activity Assay Kit (K700)
- Cytochrome P450 3A4 (CYP3A4) Human ELISA Kit (K7570)
- Cytochrome P450 3A4 Inhibitor Screening Kit (K701)
- Cytochrome b₅₅, Human Recombinant (7871)
- Cytochrome P450 2D6 Activity Assay Kit (K703)
- Ticlopidine (2919)
- Cytochrome P450 2D6 Inhibitor Screening Kit (K704)
- (+)-N-3-benzylnirvanol (2920)

FOR RESEARCH USE ONLY! Not to be used on humans.

155 S. Milpitas Blvd., Milpitas, CA 95035 USA | T: (408)-493-1800 F: (408)-493-1801 | www.biovision.com | tech@biovision.com