Gamma Glutamyl Transferase (GGT) Activity Fluorometric Assay Kit
(Catalog #K785-100; 100 reactions; Store kit at -20°C)

I. Introduction:
The Gamma-GlutamylTransferase (GGT; EC 2.3.2.2) is an enzyme that transfers gamma-glutamyl functional groups. It is found in many tissues, the most notable one being the liver, and has significance in medicine as a diagnostic marker. BioVision’s Gamma-GlutamylTransferase Assay Kit provides a convenient tool for sensitive detection of the GGT in a variety of samples. The GGT in sample will recognize L-γ-Glutamyl-AMC as a specific substrate leading to proportional fluorescence development. The activity of GGT can be easily quantified fluorometrically (Ex/Em = 365/460 nm). This assay detects GGT activity as low as 0.02 μIU in sample.

II. Kit Contents:

<table>
<thead>
<tr>
<th>Components</th>
<th>K785-100</th>
<th>Cap Code</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGT Assay Buffer</td>
<td>25 ml</td>
<td>WM</td>
<td>K785-100-1</td>
</tr>
<tr>
<td>GGT Substrate</td>
<td>1 Bottle</td>
<td>NM</td>
<td>K785-100-2</td>
</tr>
<tr>
<td>GGT Positive Control</td>
<td>1 Vial</td>
<td>Green</td>
<td>K785-100-3</td>
</tr>
<tr>
<td>AMC Standard (1mM)</td>
<td>100 µl</td>
<td>Yellow</td>
<td>K785-100-4</td>
</tr>
</tbody>
</table>

III. Storage and Handling:
Store the kit at -20°C, protected from light. Allow Assay Buffer to warm to room temperature (RT) before use. Briefly centrifuge vials before opening. Read the entire protocol before performing the assay.

IV. Reagent Reconstitution and General Consideration:
GGT Substrate Solution: Reconstitute with 5.5 ml GGT Assay Buffer to prepare substrate solution. Avoid keeping the reconstituted substrate at RT more than 1 hour and aliquot and store at -20°C after use. It is stable for up to 1 month at -20°C after reconstitution or freeze-thaw cycles (<3 times).

GGT Positive Control: Reconstitute with 1 ml dH₂O. Pipette up and down several times to completely dissolve the pellet into solution (Don’t vortex). Aliquot enough GGT Positive Control (2 μl per assay) for the number of assays to be performed in each experiment and freeze immediately at -20°C for future use. The GGT Positive Control is stable for up to 1 month at -20°C after reconstitution or freeze-thaw cycles (<5 times). Keep the GGT Positive Control on ice during the preparation.

V. Gamma-GlutamylTransferase Activity Assay Protocol:
1. AMC Standard Curve:
 Dilute 10 μl of the 1 mM AMC Standard with 990 μl of GGT Assay Buffer to generate a 10 μM AMC Standard Solution. Add 0, 2, 4, 6, 8, 10 μl of the diluted 10 μM AMC Standard Solution into a 96-well plate in duplicate to generate 0, 20, 40, 60, 80, 100 pmol/well AMC Standard. Adjust the final volume to 100 μl with GGT Assay Buffer.

2. Sample Preparations:
 Tissues (10 mg) or cells (1×10⁶) can be homogenized in 200 μl of GGT Assay Buffer then centrifuged (13,000 x g, 10 min.) to remove insoluble material. 10-20 μl serum samples can be directly added into each well. Adjust test samples and Positive Control to 50 μl/well with GGT Assay Buffer in a 96-well plate. We suggest testing several doses of your sample to make sure the readings are within the linear range of the Standard Curve.

3. Reaction Mix:
 Add 50 μl GGT Substrate Mix into each well containing the test samples and Positive Controls. Mix well. Do Not Add to AMC Standards.

4. Measurement: For AMC Standard Curve, measure the fluorescence at Ex/Em = 365/460 nm in a microplate reader. For the samples and positive controls, incubate the mix for 3 min at 37°C, then measure fluorescence at Ex/Em = 365/460 nm in a microplate reader (RFU₀), incubate for another 30 min to 2 hr at 37°C to measure again (RFU₁); incubation times will depend on the GGT activity in the samples. We recommend measuring the fluorescence in a kinetic method (preferably every 3 - 5 min.) and choosing the period of linear range which falls within the AMC Standard Curve to calculate the GGT activity of the samples.

5. Calculation: Subtract 0 Standard from all readings. Plot the AMC Standard Curve, then calculate the GGT activity of the test samples: ΔRFU = RFU₁ - RFU₀, apply the ΔRFU to the AMC Standard Curve to get B nmol of AMC generated by GGT in the given time.

\[\text{GGT Activity} = \frac{\text{Sample Dilution Factor} \times \text{B}}{\text{T} \times \text{V}} \]

Where:
- B is the AMC amount from Standard Curve (in pmol)
- T is the time incubated (in min)
- V is the sample volume added into the reaction well (in ml)

Unit Definition: One unit is the amount GGT to generate 1.0 μmol of AMC per min at 37°C.

Note: One AMC unit is equal to 3.93 IU.

VI. RELATED PRODUCTS:

- ADP/ATP Ratio Assay Kit
- Glucose Assay Kit
- Uric Acid Assay Kit
- Creatine Assay Kit
- Ammonia Assay Kit
- Triglyceride Assay Kit
- Nitric Oxide Assay Kit
- GGT Activity Colorimetric Assay Kit
- Ascorbic Acid Quantification Kit
- Fatty Acid Assay Kit
- Pyruvate Assay Kit
- Creatinine Assay Kit
- Free Glycerol Assay Kit
- Total Antioxidant Capacity (TAC) Assay Kit
- Glutamate Kit
GENERAL TROUBLESHOOTING GUIDE:

<table>
<thead>
<tr>
<th>Problems</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Assay not working | • Use of ice-cold assay buffer
• Omission of a step in the protocol
• Plate read at incorrect wavelength
• Use of a different 96-well plate | • Assay buffer must be at room temperature
• Refer and follow the data sheet precisely
• Check the wavelength in the data sheet and the filter settings of the instrument
• Fluorescence: Black plates (clear bottoms) ; Luminescence: White plates ; Colorimeters: Clear plates |
| Samples with erratic readings | • Use of an incompatible sample type
• Samples prepared in a different buffer
• Cell/ tissue samples were not completely homogenized
• Samples used after multiple free-thaw cycles
• Presence of interfering substance in the sample
• Use of old or inappropriately stored samples | • Refer data sheet for details about incompatible samples
• Use the assay buffer provided in the kit or refer data sheet for instructions
• Use Dounce homogenizer (increase the number of strokes); observe for lysis under microscope
• Aliquot and freeze samples if needed to use multiple times
• Troubleshoot if needed
• Use fresh samples or store at correct temperatures until use |
| Lower/ Higher readings in Samples and Standards | • Improperly thawed components
• Use of expired kit or improperly stored reagents
• Allowing the reagents to sit for extended times on ice
• Incorrect incubation times or temperatures
• Incorrect volumes used | • Thaw all components completely and mix gently before use
• Always check the expiry date and store the components appropriately
• Always thaw and prepare fresh reaction mix before use
• Refer datasheet & verify correct incubation times and temperatures
• Use calibrated pipettes and aliquot correctly |
| Readings do not follow a linear pattern for Standard curve | • Use of partially thawed components
• Pipetting errors in the standard
• Pipetting errors in the reaction mix
• Air bubbles formed in well
• Standard stock is at an incorrect concentration
• Calculation errors
• Substituting reagents from older kits/ lots | • Thaw and resuspend all components before preparing the reaction mix
• Avoid pipetting small volumes
• Prepare a master reaction mix whenever possible
• Pipette gently against the wall of the tubes
• Always refer the dilutions in the data sheet
• Recheck calculations after referring the data sheet
• Use fresh components from the same kit |
| Unanticipated results | • Measured at incorrect wavelength
• Samples contain interfering substances
• Use of incompatible sample type
• Sample readings above/below the linear range | • Check the equipment and the filter setting
• Troubleshoot if it interferes with the kit
• Refer data sheet to check if sample is compatible with the kit or optimization is needed
• Concentrate/ Dilute sample so as to be in the linear range |

Note: The most probable list of causes is under each problem section. Causes/ Solutions may overlap with other problems.