Albumin-to-Creatinine Ratio (ACR) Assay Kit

(Catalog # K551-100; 100 assays; Store at -20°C)

I. Introduction:
Albumin-to-Creatinine Ratio (ACR) is one of the two markers used to determine chronic kidney disease (CKD). ACR is recommended to be measured on regular basis on people living with Type I and Type II diabetes. ACR is defined as the ratio between albumin (reported in mg/dl) and creatinine (reported in g/dl). This ratio estimates the amount of albumin excreted in urine during a 24 hr period. Albuminuria is diagnosed when ACR is greater than 30 mg albumin/g creatinine. BioVision’s ACR Assay Kit provides a simple, sensitive, and high-throughput adaptable assay that detects albumin (detection range: 0.02-2.5 mg/ml), creatinine (detection range: 0.002-0.5 mg/ml) and Albumin-to-creatinine ratio. The ACR ratio is determined in two steps: First, albumin is determined by using a probe (AB580) that specifically recognizes albumin (Ex/Em = 600/630 nm). Second, creatinine is converted to sarcosine via enzymatic reactions. Sarcosine is specifically oxidized generating a product that reacts with a probe producing a chromophore that can be detected at 570 nm.

\[
\text{Step 1: } \text{Albumin} \xrightarrow{\text{Probe (AB580)}} \text{Fluorescence (Ex/Em = 600/630 nm)}
\]

\[
\text{Step 2: } \text{Creatinine} \xrightarrow{\text{Creatininase}} \text{Creatine} \xrightarrow{\text{Creatininase}} \text{Sarcosine} \xrightarrow{\text{Oxidation}} \text{Absorbance (OD 570 nm)}
\]

II. Application:
- Estimation of albumin in biological samples
- Estimation of creatinine in biological samples
- Determination of ACR in mammalian urine samples

III. Sample Type:
- Albumin: urine, saliva, etc.
- Creatinine: urine, serum, etc.
- ACR: urine

IV. Kit Contents:

<table>
<thead>
<tr>
<th>Components</th>
<th>K551-100</th>
<th>Cap Code</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine Assay Buffer</td>
<td>25 ml</td>
<td>WM</td>
<td>K551-100-1</td>
</tr>
<tr>
<td>Albumin Assay Buffer</td>
<td>7 ml</td>
<td>NM</td>
<td>K551-100-2</td>
</tr>
<tr>
<td>Albumin Diluent</td>
<td>7 ml</td>
<td>Blue</td>
<td>K551-100-3</td>
</tr>
<tr>
<td>Albumin Probe (AB580)</td>
<td>0.4 ml</td>
<td>Brown</td>
<td>K551-100-4</td>
</tr>
<tr>
<td>Creatinine Probe</td>
<td>0.2 ml</td>
<td>Red</td>
<td>K551-100-5</td>
</tr>
<tr>
<td>Creatininase</td>
<td>1 vial</td>
<td>Blue</td>
<td>K551-100-6</td>
</tr>
<tr>
<td>Creatininase</td>
<td>1 vial</td>
<td>Purple</td>
<td>K551-100-7</td>
</tr>
<tr>
<td>Creatinine Enzyme Mix</td>
<td>1 vial</td>
<td>Green</td>
<td>K551-100-8</td>
</tr>
<tr>
<td>BSA Standard (2 mg/ml)</td>
<td>1 ml</td>
<td>White</td>
<td>K551-100-9</td>
</tr>
<tr>
<td>Creatinine Standard (10 μmol)</td>
<td>1 vial</td>
<td>Yellow</td>
<td>K551-100-10</td>
</tr>
</tbody>
</table>

V. User Supplied Reagents and Equipment:
- 96-well white plate with flat bottom
- 96-well clear plate with flat bottom
- 10 kDa Spin Column (Cat. # 1997)
- Multi-well spectrophotometer

VI. Storage Conditions and Reagent Preparation:
Store kit at -20°C, protected from light. Briefly spin small vials prior to opening. Read entire protocol before performing the assay.
- Creatinine Assay Buffer, Albumin Assay Buffer, and Albumin Diluent: Store at -20°C. Bring to room temperature (RT) before use.
- Albumin Probe (AB580) and Creatinine Probe: Light sensitive. Store at -20°C. Bring to RT before use.
- Creatininase, Creatininase, and Creatinine Enzyme Mix: Reconstitute with 220 μl of Creatinine Assay Buffer. Aliquot and store at -20°C. Freeze/thaw should be limited to one time. Keep on ice during use.
- BSA Standard (2 mg/ml): Store at RT.
- Creatinine (10 μmol): Reconstitute with 115 μl of dH2O to generate 10 μg/μl Creatinine Standard. Dissolve completely. Store at -20°C. Use within 2 months.

VII. Albumin Assay Protocol:
1. Sample Preparation: Centrifuge urine sample at 4000 x g, 4°C for 3 min., if precipitation is observed. Collect supernatant. Add 1-50 μl into desired well(s) in a 96-well white plate. Adjust the volume to 50 μl/well with Albumin Diluent.

Notes:
a. For saliva samples, centrifuge sample at 10,000 x g, 4°C for 10 min., if precipitation is observed. Collect supernatant. Add 1-50 μl into desired well(s) in a 96-well white plate. Adjust the volume to 50 μl/well with Albumin Diluent.
b. Metabolites found in biological samples do not contribute significantly to the background signal. However, if interference is observed in the sample, prepare parallel sample well(s) as sample background control(s). Make up the volume to 50 µl/well with Albumin Diluent.

c. Albuminuria concentration is over a wide range depending on the sample. Albumin concentration in human urine (mg Albumin/L) is - normal: < 10; microalbuminuria: 20 – 200; and macroalbuminuria > 200. For unknown samples, we recommend doing a pilot experiment and testing several doses to ensure the readings are within the Standard Curve range.

2. Standard Curve Preparation: Prepare 0.5 mg/ml BSA Standard by adding 25 µl of 2 mg/ml BSA Standard into 75 µl of Albumin Diluent. Add 0, 2, 4, 6, 8, and 10 µl of 0.5 mg/ml BSA Standard into a series of wells in a 96-well white plate to generate 0, 1, 2, 3, 4 and 5 µg of BSA Standard/well. Adjust the volume to 50 µl/well with Albumin Diluent.

3. Reaction Mix: Mix enough reagents for the total number of wells to be assayed. For each well, prepare 50 µl of Reaction Mix containing:

<table>
<thead>
<tr>
<th>Reaction Mix</th>
<th>Background Control Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin Assay Buffer</td>
<td>46 µl</td>
</tr>
<tr>
<td>Albumin Probe (AB580)</td>
<td>4 µl</td>
</tr>
</tbody>
</table>

Mix well. Add 50 µl of Reaction Mix into Standard and sample wells. Mix.

* For samples having background, add Background Control Mix to background control well(s) and mix.

4. Measurement: Incubate plate at 25°C for 30 min., protected from light. Measure fluorescence (Ex/Em = 600/630 nm) in end point mode.

5. Calculation: Subtract 0 Standard reading from all readings. Plot the BSA Standard Curve. If sample background control is significant, then subtract sample background control reading from sample reading. Apply sample’s corrected RFU to Standard Curve to get B µg of Albumin in the sample well.

\[
\text{Sample Albumin Concentration (C)} = \frac{B}{V} \times \frac{D}{D_{\text{sample dilution factor}}} \times \mu g/\mu l \text{ or mg/ml}
\]

Where:
- \(B \) is amount of Albumin in the sample well from Standard Curve (µg)
- \(V \) is sample volume added into the reaction well (µl)
- \(D \) is sample dilution factor

BSA molecular weight = 66.5 kDa
1 mg/ml ≡ 1 µg/µl ≡ 1000 mg/L ≡ 100 mg/dl

VIII. Creatinine Assay Protocol:

1. Sample Preparation: Centrifuge urine sample at 4000 x g, 4°C for 30 min., if precipitation is observed. Collect supernatant. Add 2-50 µl into desired well(s) in a 96-well clear plate. Adjust the volume to 50 µl/well with Creatinine Assay Buffer.

Notes:

a. For samples having medium and high concentrations of protein such as serum, urine, then subtract sample background control reading from sample reading. Apply sample’s corrected OD to Standard Curve to get B nmol of Creatinine in the sample well.

\[
\text{Sample Creatinine Concentration (C)} = \frac{B}{V} \times \frac{D}{D_{\text{sample dilution factor}}} \times \left(\frac{1 \text{ mM Creatinine}}{1 \text{ nmol Creatinine/µl}}\right)
\]

Where:
- \(B \) is amount of Creatinine in the sample well from Standard Curve (µg)
- \(V \) is sample volume added into the reaction well (µl)
- \(D \) is sample dilution factor

1 mM Creatinine ≡ 1 nmol Creatinine/µl ≡ 0.113 mg/ml ≡ 0.0113 mg/dl
IX. Estimation of Albumin-to-Creatinine Ratio (ACR):

Estimate ACR by using albumin and creatinine concentrations established in sample(s) using the formula:

\[
\text{ACR} = \frac{\text{Albumin (mg/dL)}}{\text{Creatinine (g/dL)}}
\]

\[
\text{ACR} = \frac{\text{mg Albumin}}{\text{g Creatinine}} \approx \frac{\text{Excreted Albumin (mg)}}{24 \text{ hr}}
\]

Notes:

a. Albuminuria and Albumin-to-Creatinine Ratio (in mg Albumin/g Creatinine) have been defined as follows: Normal: 0 \leq ACR \leq 30; Microalbuminuria: 30 \leq ACR \leq 300; Proteinuria Clinical: ACR > 300.

b. Chronic Kidney Disease (CKD) may be present if ACR \geq 30.

Figure: (a) BSA Standard Curve. (b) Creatinine Standard Curve. (c) Estimation of ACR in human urine in diabetic (1) and non-diabetic donors (2, and 3). For Albumin, 50 µl of undiluted samples and for Creatinine, 30 µl of diluted samples (100 times diluted using Creatinine Assay Buffer) were assayed following the kit protocol.

X. Related Products:

- Albumin (Albuminuria) Fluorometric Assay Kit (K550)
- Albumin (BCG) Assay Kit (Colorimetric) (K554)
- Glucose Colorimetric/Fluorometric Assay Kit (K606)
- Glucose Colorimetric Assay Kit II (K686)
- Renin Activity Fluorometric Assay Kit (K800)
- Creatine Colorimetric/Fluorometric Assay Kit (K635)
- Urea Colorimetric Assay Kit (K375)
- 10 kDa Spin Column (1997)
- Creatinine Colorimetric/Fluorometric Assay Kit (K625)
- BCA Protein Assay Kit II (K813)
- Glucose and Sucrose Colorimetric/Fluorometric Assay Kit (K616)
- PicoProbe™ Glucose Fluorometric Assay Kit (K688)
- Renin Inhibitor Screening Kit (Fluorometric) (K799)
- Sarcosine Colorimetric/Fluorometric Assay Kit (K636)
- Urea Colorimetric Assay Kit II (K376)

FOR RESEARCH USE ONLY! Not to be used on humans.