Tissue Transglutaminase (tTG) (Human) ELISA Kit

I. Introduction:
Tissue transglutaminase (tTG) crosslinks proteins between an ε-amino group of a lysine residue and a γ-carboxamide group of glutamine residue, creating an inter- or intramolecular bond that is highly resistant to proteolysis (protein degradation). Aside from its crosslinking function, tTG catalyzes other types of reactions including deamidation, GTP-binding/hydrolyzing, and isopeptidase activities. Tissue transglutaminase can be found both in the intracellular and the extracellular spaces of various types of tissues and is found in many different organs including the heart, the liver, and the small intestine. Intracellular tTG is abundant in the cytosol but smaller amounts can also be found in the nucleus and the mitochondria. BioVision's tTG ELISA kit is a sandwich ELISA assay for the quantitative measurement of tTG in human serum, plasma and cell culture supernatants. The density of color is proportional to the amount of tTG captured from the samples.

II. Application:
This ELISA kit is used for in vitro quantitative determination of tTG in human samples.
Detection Range: 0.156 - 10 ng/ml
Sensitivity: < 0.094 ng/ml
Assay Precision: Intra-Assay: CV < 8%; Inter-Assay: CV < 10% (CV (%) = SD/mean X 100)
This assay has high sensitivity and excellent specificity for detection of tTG. No significant cross-reactivity or interference between tTG and analogues was observed.

III. Sample Type:
Human serum, plasma, tissue homogenates and other biological fluids.

IV. Kit Contents:

<table>
<thead>
<tr>
<th>Components</th>
<th>E4501-100</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro ELISA Plate</td>
<td>8 X 12 strips</td>
<td>E4501-100-1</td>
</tr>
<tr>
<td>Lyophilized Standard</td>
<td>2 vials</td>
<td>E4501-100-2</td>
</tr>
<tr>
<td>Sample / Standard dilution buffer</td>
<td>20 ml</td>
<td>E4501-100-3</td>
</tr>
<tr>
<td>Biotin- detection antibody (Concentrated)</td>
<td>120 μl</td>
<td>E4501-100-4</td>
</tr>
<tr>
<td>Antibody dilution buffer</td>
<td>10 ml</td>
<td>E4501-100-5</td>
</tr>
<tr>
<td>HRP-Streptavidin Conjugate (SABC) (Avoid light)</td>
<td>120 μl</td>
<td>E4501-100-6</td>
</tr>
<tr>
<td>SABC dilution buffer</td>
<td>10 ml</td>
<td>E4501-100-7</td>
</tr>
<tr>
<td>TMB substrate (Avoid light)</td>
<td>10 ml</td>
<td>E4501-100-8</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>10 ml</td>
<td>E4501-100-9</td>
</tr>
<tr>
<td>Wash buffer (25X)</td>
<td>30 ml</td>
<td>E4501-100-10</td>
</tr>
<tr>
<td>Plate sealers</td>
<td>5</td>
<td>E4501-100-11</td>
</tr>
</tbody>
</table>

V. User Supplied Reagents and Equipment:
- Microplate reader capable of measuring absorbance at 450 nm
- 37°C incubator
- Precision pipettes with disposable tips
- Clean eppendorf tubes for preparing standards or sample dilutions
- Absorbent paper

VI. Storage and Handling:
The entire kit may be stored at 4°C for up to 6 months from the date of shipment.

VII. Reagent and Sample Preparation:

1. Biotin- detection antibody working solution: Calculate the total volume of the working solution: 0.1 ml / well x quantity of wells with additional 0.1 - 0.2 ml of the total volume. Dilute the Biotin- detection antibody with Antibody dilution buffer at 1:100 and mix thoroughly.
2. HRP-Streptavidin Conjugate (SABC): Calculate the total volume of the working solution: 0.1 ml / well x quantity of wells with additional 0.1 - 0.2 ml of the total volume. Dilute the SABC with SABC dilution buffer at 1:100 and mix thoroughly.
3. Wash Buffer: Dilute 30 ml of Concentrated Wash Buffer into 750 mL of Wash Buffer with deionized or distilled water. Put unused solution back at 4°C. If crystals have formed in the concentrate, warm it with 40°C water bath and mix it gently until the crystals have completely dissolved. The solution should be cooled to room temperature before use.
4. Standard Preparation:
 - Reconstitute the lyophilized tTG standard by adding 1 ml of Standard/Sample Dilution Buffer to make the 10 ng/ml standard stock solution. Use within 2 hours after reconstituting.
 - Allow solution to sit at room temperature for 10 minutes, then gently vortex to

FOR RESEARCH USE ONLY! Not to be used on humans.

155 S. Milpitas Blvd., Milpitas, CA 95035 USA | T: (408)493-1800 F: (408)493-1801 | www.biovision.com | tech@biovision.com
mix completely.
- Prepare 0.6 ml of 5 ng/ml top standard by adding 0.3 ml of the above stock solution in 0.3 ml of Standard/Sample Dilution Buffer. Perform 2-fold serial dilutions of the top standards to make the standard curve within the range of this assay.
- Suggested standard points are: 10, 5, 2.5, 1.25, 0.625, 0.313, 0.156, 0 ng/ml

5. Sample Preparation:
Note: Samples to be used within 5 days may be stored at 4°C, otherwise samples must be stored at -20°C (≤1 month) or -80°C (≤2 months) to avoid loss of bioactivity and contamination. Avoid multiple freeze-thaw cycles.
- Serum: Coagulate the serum for 2 hour at room temperature or overnight at 4°C. Centrifuge at approximately 1000×g for 20 min. Collect the supernatant and carry out the assay immediately. Blood collection tubes should be disposable, non-pyrogenic, and non-endotoxin.
- Plasma: Collect plasma using EDTA-Na2 as an anticoagulant. Centrifuge samples for 15 minutes at 1000×g at 2 - 8°C within 30 minutes of collection. Collect the supernatant and carry out the assay immediately. Avoid hemolysis, high cholesterol samples.
- Tissue homogenates: Rinse the tissue with ice-cold PBS (0.01M, pH=7.4) to remove excess hemolysis blood thoroughly. Tissue pieces should be weighed and then minced to small pieces which will be homogenized in PBS (the volume depends on the weight of the tissue. 9 mL PBS would be appropriate for 1 g of tissue. Some protease inhibitor is recommended to add into the PBS) with a glass homogenizer on ice. To further break the cells, sonicate the suspension with an ultrasonic cell disrupter or subject it to freeze-thaw cycles. The homogenates are then centrifuged for 5 minutes at 5000×g to retrieve the supernatant.
- Cell culture supernatant: Centrifuge supernatant for 20 minutes to remove insoluble impurity and cell debris at 1000×g at 2 - 8°C. Collect the clear supernatant and carry out the assay immediately or aliquot and store at -20°C.
- Other biological fluids: Centrifuge samples for 20 min at 1000×g at 4°C. Collect the supernatant and carry out the assay immediately.
- End user should estimate the concentration of the target protein in the test sample first, and select a proper dilution factor to make the diluted target protein concentration fall in the optimal detection range of the kit.

VIII. Assay Protocol:
Note: Bring all reagents and samples to room temperature 30 minutes prior to the assay. It is recommended that all standards and samples be run at least in duplicate. A standard curve must be run with each assay.
1. Prepare all reagents, samples and standards as instructed in section VII.
2. Wash plate 2 times with 1X Wash Solution before adding standard, sample and control wells.
3. Add 100 μl of each standards or samples into appropriate wells. Cover well and incubate for 1.5 hours at 37°C. 4. Remove the cover and discard the plate content without washing or letting the wells completely dry.
5. Add 0.1 ml of Biotin-detection antibody work solution into the above wells. Seal the plate and incubate at 37°C for 60 min.
6. Discard the solution and wash 3 times with 1X Wash Solution. Wash by filling each well with Wash Buffer (350 μl) using a multi-channel pipette or autowasher. Let it soak for 1-2 minutes, and then remove residual wash-liquid from the wells by aspiration. After the last wash, remove any remaining Wash Buffer by aspirating or decanting. Clap the plate on absorbent filter papers or other absorbent materials.
7. Add 0.1 ml of SABC working solution into each well, cover the plate and incubate at 37°C for 30 min.
8. Discard the solution and wash 5 times with 1X Wash Solution as step 6.
9. Add 90 μl of TMB substrate into each well, cover the plate and incubate at 37°C in dark within 15-30 min. The shades of blue should be seen in the first 3-4 wells by the end of incubation.
10. Add 50 μl of Stop Solution to each well. Read result at 450 nm within 20 minutes.

IX. CALCULATION:
For calculation, \(\text{(the relative O.D.450)} = \frac{\text{(the O.D.450 of each well)} - \text{(the O.D.450 of Zero well)}}{\text{X}} \). The standard curve can be plotted as the relative O.D.450 of each standard solution (Y) vs. the respective concentration of the standard solution (X). The Human tTG concentration of the samples can be interpolated from the standard curve. If the samples measured were diluted, multiply the dilution factor to the concentrations from interpolation to obtain the concentration before dilution.

Figure: Typical Standard Curve: These standard curves are for demonstration only. A standard curve must be run with each assay.

FOR RESEARCH USE ONLY! Not to be used on humans.

155 S. Milpitas Blvd., Milpitas, CA 95035 USA | T: (408)493-1800 F: (408)493-1801 | www.biovision.com | tech@biovision.com
X. RECOVERY:

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Recovery range (%)</th>
<th>Average (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>serum (n=5)</td>
<td>88-102</td>
<td>94</td>
</tr>
<tr>
<td>EDTA plasma (n=5)</td>
<td>85-104</td>
<td>98</td>
</tr>
<tr>
<td>heparin plasma (n=5)</td>
<td>87-99</td>
<td>93</td>
</tr>
</tbody>
</table>

XI. LINEARITY:

<table>
<thead>
<tr>
<th>Sample</th>
<th>1:2</th>
<th>1:4</th>
<th>1:8</th>
<th>1:16</th>
</tr>
</thead>
<tbody>
<tr>
<td>serum (n=5)</td>
<td>89-105%</td>
<td>91-105%</td>
<td>85-96%</td>
<td>86-102%</td>
</tr>
<tr>
<td>EDTA plasma (n=5)</td>
<td>83-98%</td>
<td>84-101%</td>
<td>89-98%</td>
<td>87-101%</td>
</tr>
<tr>
<td>heparin plasma (n=5)</td>
<td>80-88%</td>
<td>82-90%</td>
<td>80-97%</td>
<td>82-92%</td>
</tr>
</tbody>
</table>

XII. RELATED PRODUCTS:

- Glutamate Colorimetric Assay Kit (Cat. No. K629)
- Glutamate Dehydrogenase Activity Colorimetric Assay Kit (Cat. No. K729)
- Aspartate Aminotransferase (AST) (Human) ELISA Kit (Cat. No. E4319)
- Glutaminase C-IN-1 (968) (Cat. No. B1198)
- CB-839 (Cat. No. B1179)