Call 408.493.1800 | Fax 408.493.1801 | Toll Free 800.891.9699 (US Only) | Email: [email protected]

FGFs

Fibroblast growth factors, or FGFs, are a family of growth factors involved in angiogenesis, wound healing, and embryonic development. The FGFs are heparin-binding proteins and interactions with cell-surface-associated heparan sulfate proteoglycans have been shown to be essential for FGF signal transduction. FGFs are key players in the processes of proliferation and differentiation of wide variety of cells and tissues. One important function of FGF1 and FGF2 is the promotion of endothelial cell proliferation and the physical organization of endothelial cells into tube-like structures. They thus promote angiogenesis, the growth of new blood vessels from the pre-existing vasculature. FGF1 and FGF2 are more potent angiogenic factors than vascular endothelial growth factor (VEGF) or platelet-derived growth factor (PDGF). FGF1 has been shown in clinical experimental studies to induce angiogenesis in the heart. As well as stimulating blood vessel growth, FGFs are important players in wound healing. FGF1 and FGF2 stimulate angiogenesis and the proliferation of fibroblasts that give rise to granulation tissue, which fills up a wound space/cavity early in the wound-healing process. FGF7 and FGF10 (also known as Keratinocyte Growth Factors KGF and KGF2, respectively) stimulate the repair of injured skin and mucosal tissues by stimulating the proliferation, migration and differentiation of epithelial cells, and they have direct chemotactic effects on tissue remodeling. During development of the central nervous system, FGFs play important roles in neurogenesis, axon growth, and differentiation. FGFs are also important for maintenance of the adult brain. Thus, FGFs are major determinants of neuronal survival both during development and during adulthood. Adult neurogenesis within the hippocampus e.g. depends greatly on FGF-2. In addition, FGF-1 and FGF-2 seem to be involved in the regulation of synaptic plasticity and processes attributed to learning and memory, at least in the hippocampus. Most FGFs are secreted proteins that bind heparan sulfates and can, therefore, be caught up in the extracellular matrix of tissues that contain heparan sulfate proteoglycans. This local action of FGF proteins is classified as paracrine signaling, most commonly through the JAK-STAT signaling pathway or the Receptor tyrosine kinase (RTK) pathway.


FGFs Products

35 Item(s)

per page

35 Item(s)

per page

$
Subscribe to our Newsletter!!
and automatically get enrolled into a raffle to win Google Home.
Offer valid for US customers only.